The Leishmania GDP-mannose transporter is an autonomous, multi-specific, hexameric complex of LPG2 subunits.
نویسندگان
چکیده
LPG2 (a gene involved in lipophosphoglycan assembly) encodes the Golgi GDP-Man transporter of the protozoan parasite Leishmania and is a defining member of a new family of eukaryotic nucleotide-sugar transporters (NSTs). Although NST activities are widespread, mammalian cells lack a GDP-Man NST, thereby providing an ideal heterologous system for probing the LPG2 structure and activity. LPG2 expression constructs introduced into either mammalian cells or a Leishmania lpg2(-) mutant conferred GDP-Man, GDP-Ara, and GDP-Fuc (in Leishmania only) uptake in isolated microsomes. LPG2 is the first NST to be associated with multiple substrate specificities. Uptake activity showed latency, exhibited an antiport mechanism of transport with GMP, and was susceptible to the anion transport inhibitor DIDS. The apparent K(m) for GDP-Man uptake was similar in transfected mammalian cells (12.2 microM) or Leishmania (6.9 microM). Given the evolutionary distance between protozoans and vertebrates, these data suggest that LPG2 functions autonomously to provide transporter activity. Using epitope-tagged LPG2 proteins, we showed the existence of hexameric LPG2 complexes by immunoprecipitation experiments, glycerol gradient centrifugation, pore-limited native gel electrophoresis, and cross-linking experiments. This provides strong biochemical evidence for a multimeric complex of NSTs, a finding with important implications to the structure and specificity of NSTs in both Leishmania and other organisms. Inhibition of essential GDP-Man uptake in fungal and protozoan systems offers an attractive target for potential chemotherapy.
منابع مشابه
Leishmania donovani lacking the Golgi GDP-Man transporter LPG2 exhibit attenuated virulence in mammalian hosts.
Surface phosophoglycans such as lipophosphoglycan (LPG) or proteophosphoglycan (PPG) and glycosylinositol phospholipids (GIPLs) modulate essential interactions between Leishmania and mammalian macrophages. Phosphoglycan synthesis depends on the Golgi GDP-mannose transporter encoded by LPG2. LPG2-null (lpg2(-)) Leishmania major cannot establish macrophage infections or induce acute pathology, wh...
متن کاملGolgi GDP-mannose uptake requires Leishmania LPG2. A member of a eukaryotic family of putative nucleotide-sugar transporters.
The synthesis of glycoconjugates within the secretory pathway of eukaryotes requires the provision of lumenal nucleotide-sugar substrates. This is particularly important for eukaryotic microbes such as Leishmania because they must synthesize considerable amounts of extracellular and cell surface glycoconjugates that play significant roles in the infectious cycle. Here we used properly oriented ...
متن کاملReconstitution of GDP-mannose transport activity with purified Leishmania LPG2 protein in liposomes.
Activated nucleotide sugars required for the synthesis of glycoconjugates within the secretory pathway of eukaryotes are provided by the action of nucleotide sugar transporters (NSTs). Typically, NSTs are studied in microsomal preparations from wild-type or mutant lines; however, in this setting it can be difficult to assess NST properties because of the presence of glycosyltransferases and oth...
متن کاملIdentification of a compensatory mutant (lpg2-REV) of Leishmania major able to survive as amastigotes within macrophages without LPG2-dependent glycoconjugates and its significance to virulence and immunization strategies.
Different Leishmania species rely to different extents on abundant glycoconjugates, such as lipophosphoglycan (LPG) and related molecules, in mammalian infections. Previously, we showed that Leishmania major deletion mutants lacking the Golgi GDP-mannose transporter LPG2, which is required for assembly of the dominant phosphoglycan (PG) repeats of LPG, were unable to survive in macrophages. The...
متن کاملImmunization with persistent attenuated Delta lpg2 Leishmania major parasites requires adjuvant to provide protective immunity in C57BL/6 mice.
Leishmania major parasites lacking the GDP-mannose transporter, termed Deltalpg2 parasites, fail to induce disease in mice but persist long-term. We previously found that Deltalpg2 organisms protect BALB/c mice from virulent L. major challenge. In contrast, we report here that Deltalpg2 parasites induce protective immunity in C57BL/6 mice only when administered with CpG-containing oligodeoxynuc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 39 8 شماره
صفحات -
تاریخ انتشار 2000